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Abstract The growth curve clustering problem is analyzed and its connec-
tion with the spectral relaxation method is described. For a given set of growth
curves and similarity function, a similarity matrix is defined, from which the
corresponding similarity graph is constructed. It is shown that a nearly op-
timal growth curve partition can be obtained from the eigendecomposition
of a specific matrix associated with a similarity graph. The results are illus-
trated and analyzed on the set of synthetically generated growth curves. One
real-world problem is also given.

Keywords Curve clustering · Similarity graph · Laplacian matrix ·
Modularity matrix · Spectral methods

1 Introduction

Clustering or grouping a data set into conceptually meaningful clusters (Bezdek
1981) is a well-studied problem in recent literature (Kogan 2007; Su et al.
2010), and it has practical importance in a wide variety of applications such as
computer vision, signal-image-video analysis, multimedia, networks, biology,5
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medicine, geology, psychology, business, politics and other social sciences. Clas-
sification and ranking of objects are also becoming more and more interesting
topics for researchers, decision makers and state administrations (Marošević
et al. 2013; Turkalj et al. 2016).

Clustering algorithms identify clusters based on some measure of similar-10

ity between the objects of the data set. They can be divided into two main
groups: hierarchical and partitional (Jain 2010). Hierarchical clustering algo-
rithms recursively find nested clusters either in agglomerative mode (starting
with each data point in its own cluster and merging the most similar pair of
clusters successively to form a cluster hierarchy) or in divisive mode (starting15

with all data points in one cluster and recursively dividing each cluster into
smaller clusters). They do not require any input parameters, only a similarity
measure is needed. The most well-known hierarchical algorithms (Gan et al.
2007) are single-link, complete-link, average-link and Ward algorithm.

Compared to hierarchical clustering algorithms, partitional clustering al-20

gorithms find all the clusters simultaneously as a partition of the data and
do not produce a hierarchical structure. Because only one set of clusters is
the output of a typical partitional clustering algorithm, the user is required to
input the desired number of clusters (usually called k). Generally, partitional
clustering algorithms are faster than hierarchical clustering.25

Partitional clustering algorithms can be divided into two classes, i.e., hard
clustering, where each data belongs to only one cluster, and soft clustering,
where every data point belongs to every cluster up to a certain degree. The
most popular and the simplest hard clustering algorithm is the k−means
algorithm. Well-known soft clustering methods include the Fuzzy k−means30

(Bezdek 1981), the Expectation Maximization algorithm (see, for example
Duda et al. 2011), the smooth k−means algorithm that is based on the Eu-
clidean l2−norm (Kogan 2007), or on the l1−norm (Sabo 2014), etc.

Spectral clustering is a general class of techniques for clustering a graph de-
rived from the data by using eigenvectors of adjacency (or similarity) matrices.35

Eigenvectors are used to perform dimensionality reduction before clustering
in fewer dimensions (see e.g. Luxburg 2007). These techniques are very useful
in hard non-convex clustering problems since they provide new data represen-
tation in the low-dimensional space that can be easily clustered. Clustering
algorithms that rely on spectral techniques can be used either for partitional40

clustering such that, after data are projected into a lower-dimensional space
(the spectral/eigenvector domain) where they are easily separable, some type
of the k−means algorithm can be applied, or for hierarchical clustering by re-
peatedly bipartitioning the subsets in this way. The most popular matrix used
for spectral clustering is the well-known Laplacian matrix (and its modifica-45

tions), but nowadays, with the development of a theory of complex networks,
the modularity matrix has become very popular, especially for a very large set
of data. Some theoretical results concerning spectral partitioning by using the
modularity matrix can be seen in Bolla (2011).

Functional data analysis is an active topic in statistics with a wide range50

of applications. It extends the classical multivariate methods when data are
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functions or curves. Clustering functional data, i.e. curve clustering, is a very
challenging task and there are many different approaches to this problem
(Jacques & Preda 2014). During the past several years various methods have
been developed for curve clustering problem: Sangalli et al. (2010) presented55

the k− means alignment algorithm, which both clusters and aligns the curves,
while Zhang et al. (2015) derived an efficient Bayesian method to cluster curve
data using the so-called elastic shape metric. Some very recent results con-
cerning curve clustering methods can be found in Chamroukhi (2016) and
Park & Ahn (2017).60

In this paper, we study a special curve clustering problem known as growth
curve clustering. We consider a nonparametric clustering method, which con-
sists of defining a specific similarity function between curves, and then, af-
ter choosing a new point–based representation of each curve, we apply the
algorithm for searching for a nearly global optimal partition. The clustering65

method is based on two spectral clustering techniques, one of them uses Lapla-
cian, and the other uses modularity matrices. To the best of our knowledge,
this method has not been used so far to solve the curve clustering problem,
not even in the case when curves are of some particular type.

The paper is organized as follows: In Section 2, we define growth curves70

and give an overview of spectral clustering methods. Section 3 deals with a
spectral approach to the problem of growth curve clustering, while in Section
4 we illustrate the possibilities of this method on both synthetically generated
curves and a real-world example.

2 Theoretical basis75

2.1 Growth curves

A growth curve or growth function is an empirical model of the evolution of
a quantity over time. Growth curves are widely used in biology for quantities
such as population size, individual body height or biomass. Our problem is
motivated by modeling and analysis of pig growth (see Vincek et al. 2012 and80

Vincek et al. 2012). The growth is a significant physiological activity for all
domestic animals, but it is of special interest when meat animals such as pigs,
poultry, beef and others are concerned since the growth is nowadays considered
as the material base of animal production. Other types of curves that often
appear in animal production are lactation curves which describe the quantity85

of the milk produced over a lactation period. These curves are one of the most
important indicators in dairy farm management, see Janković (2016).

In many practical applications, the most frequently used growth function
simulating animal weight growth is the logistic function (Jukić & Scitovski
2003; Ratkowsky 1990; Vincek et al. 2012) with parameters a = (A, b, c) given
by

f(t; a) =
A

1 + e−b(t−c)
, A, b > 0. (2.1)
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It is a solution of the differential equation

dy

dt
= by

(
1− y

A

)
, (2.2)

with initial condition y(t0) = y0, also known as the logistic growth model.
Parameter b can be interpreted as the maximum possible rate of the animal
weight growth (it determines the steepness of the logistic curve), parameter A
is the upper limit of weight growth called carrying capacity and

c = t0 +
1

b
ln
A− y0
y0

is a t-coordinate of the logistic curve inflection point. From (2.2) we can eas-
ily see that the early, unimpeded growth rate is modeled by the first term by.
Later, as the animal weight grows, the modulus of the second term, which is af-90

ter multiplication −by
2

A
, becomes almost as large as the first. So in early stages

the weight increases exponentially but levels off eventually and approaches its
carrying capacity due to limited recourses. On the interval (−∞,+∞), the
graph of y is an ”S”-shaped curve with the horizontal asymptotes y = 0 and
y = A.95

For the purpose of determining life cycle phases in animal weight growth
the following growth functions are also considered: the generalized logistic
function with parameters, the Gompertz function with parameters, and the
von Bertalanffy growth function with parameters. General growth functions
which combine several other growth functions can also be found in the lit-100

erature, such as the well-known Richardson growth function (see Ratkowsky
1990).

2.2 Spectral clustering

Spectral clustering is a very popular clustering method. It can be easily im-
plemented and efficiently solved by standard linear algebra methods. In order105

to partition a given set S = {xi : i = 1, . . . , n} of data points into k clusters
by using spectral clustering methods, we need to construct a similarity graph
G = (V,E). Each vertex vi in such graph represents a point xi and two ver-
tices are connected by an edge if some imposed condition on the calculated
similarity between the corresponding data points is fulfilled. This is possible110

only if we are able to define a specific similarity function between data points
in S.

There are many types of similarity graphs and their main purpose is to
model the local neighborhood relationships between data points. The most
popular similarity graphs are as follows: the ε−neighborhood graph, in which we115

connect all points whose pairwise distances are smaller than ε, the k−nearest
neighbor graph, in which we connect vertex u with vertex v if v is among the
k−nearest neighbors of u, and the fully connected graph, in which we connect
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all points with positive similarity with each other (Luxburg 2007). For basic
definitions and terminology in graph theory, see Diestel (2000).120

After the similarity graph is constructed, the problem of clustering can be
reformulated: we want to partition the similarity graph into two or more groups
such that the edges between different groups have very low weights and the
edges within a group have high weights. The best way to perform the partition
is either to solve the min-cut problem (Luxburg 2007) or to maximize the125

Newman-Girvan modularity (Newman & Girvan 2004). Since these problems
are in general NP-hard, it is necessary to study their relaxed version. This
leads to spectral clustering methods which require the usage of some special
matrices associated to the graph. Other examples of NP-hard problems can
be seen in Ćwik (2017).130

In what follows, we define several types of such matrices and give a brief
description of their main properties. For basic definitions and terminology in
matrix theory, see Golub & Van Loan (1996).

Let G be a undirected, weighted graph with vertex set V = {v1, . . . , vn}
and weighted adjacency matrix W, where wij = wji ≥ 0 and wii = 0, i, j =
1, . . . , n. The degree of a vertex vi is defined as

di =

n∑
j=1

wij .

Let D be a diagonal matrix with vertex degrees di, i = 1, . . . , n, on the diag-
onal.135

• The unnormalized Laplacian matrix L associated with the graph G is defined
as

L = D−W.

Matrix L is symmetric positive semidefinite with the property that the sum
of elements in each row or column is equal to zero. Consequently, L has a real
valued spectrum, all cofactors are equal, the smallest eigenvalue is zero and
the corresponding eigenvector is all-one vector 1τ . The number of connected140

components of G corresponds to the multiplicity of the eigenvalue 0 of L.

• The symmetric normalized Laplacian matrix Lsym is defined as

Lsym = D−1/2LD−1/2 = I−D−1/2WD−1/2.

Matrix Lsym is a symmetric real matrix with ones on the main diagonal. Ma-
trices Lsym and L are congruent matrices so by Sylvester’s law of inertia they
have the same numbers of positive, negative, and zero eigenvalues.145

• The random walk normalized Laplacian matrix Lrw is defined as

Lrw = D−1L = I−D−1W,
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where D−1W is the transition matrix of a random walk on G. This matrix
is non-symmetric, having ones on the main diagonal and the sum of elements
in each row is equal to zero. Matrices Lsym and Lrw are similar matrices so
they have the same spectrum. According to the Gershgorin circle theorem, all150

eigenvalues are contained in [0, 2]. It is easy to check that (λ,u) is an eigenpair
of Lrw if and only if (λ,D1/2u) is an eigenpair of Lsym.

• The modularity matrix M is defined as

M = W − ddτ ,

where d = (d1, . . . , dn)τ is the degree vector comprising the main diagonal
of D and, without loss of generality, W has an additional property that the155

sum of its elements is equal to one. Matrix M is a symmetric indefinite ma-
trix with the sum of elements in each row or column equal to zero. There-
fore, it has an eigenvalue zero with the corresponding eigenvector 1τ (Majs-
torović & Stevanović 2014).

160

• The normalized modularity matrix MD is defined as

MD = D−1/2MD−1/2 = D−1/2WD−1/2 −
√

d
√

d τ ,

where
√

d = (
√
d1, . . . ,

√
dn)τ . Matrix MD is a symmetric real matrix with

the eigenvalues in [−1, 1]. One of its eigenvalues is zero and the corresponding
eigenvector is

√
d. The relation between MD and Lsym is the following:

MD = I− Lsym −
√

d
√

d τ .

Matrices M and MD are congruent matrices.

Spectral clustering methods use these matrices to make a new representa-
tion of data set S in which clusters can be easily detected. For a given similar-
ity matrix, we construct a weighted adjacency matrix W of the corresponding165

similarity graph. By using k suitable eigenvectors of one of the above men-
tioned matrices, vertices, i.e. data points, are projected from n−dimensional
to k−dimensional space providing a new kind of representation. It was proved
that the k−means algorithm can easily detect the clusters in such data repre-
sentation (see Luxburg 2007). Beside k−means, any other type of the cluster-170

ing algorithm can also be applied.
If we choose one of the three types of Laplace matrices, then we need

to calculate k eigenvectors corresponding to its k smallest eigenvalues. This
approach is a relaxed version of the well-known min-cut problem in graph
theory.175

For one of the mentioned modularity matrices we need to calculate k eigen-
vectors corresponding to its k largest eigenvalues and this is a relaxed version
of the Newman-Girvan modularity maximization problem, nowadays very pop-
ular in the theory of complex networks.
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Both approaches have the same purpose, i.e. to detect clusters in a graph.180

The only difference is that the min-cut approach is mainly focused on minimiz-
ing the sum of weights of edges between clusters, while the Newman-Girvan
modularity approach is focused on maximizing the weights of edges inside
clusters.

Spectral clustering algorithms for all types of matrices considered here are185

given in Section 3.1.

Remark 1 The main difficulty of clustering algorithms is the estimation of
k, where k is the number of clusters. For Laplacian matrices the appropriate
tool is the eigengap heuristic. The optimal k is the one for which the k smallest
eigenvalues λ1 < · · · < λk are very small and λk+1 is relatively large.190

For modularity matrices optimal k is the one for which k = p+ 1, where p is
the number of positive eigenvalues.

3 The proposed approach to growth curve clustering

LetH = {f(t ; ai) : i = 1, . . . , n} be the set of growth curves defined with (2.1)

and let us suppose
df(t ; ai)

dt
∈ L2(R,R), ai ∈ Rl. Growth curve clustering is195

a problem of partitioning a set of growth curves into k subsets called clusters,
1 ≤ k ≤ n, so that the curves inside each of them are very similar among
themselves (equivalently, they are closest to each other) and as different as
possible from the curves of the other clusters (equivalently, they are furthest
from the curves of other clusters).200

For a set H of growth curves, we are interested in the corresponding growth
velocities. Therefore, we consider a dissimilarity function d : H × H → R+

between curves defined as

d(f(t; ai), f(t; aj)) =

∫ β

α

 f ′(t; ai)√∫ β
α

(f ′(t; ai))2 dt
− f ′(t; aj)√∫ β

α
(f ′(t; aj))2 dt

2

dt,

(3.1)
0 ≤ α < β <∞, which can be written as

d(f(t; ai), f(t; aj)) = 2(1− s(f(t; ai), f(t; aj))),

with s : H×H → R+ being a similarity index between curves defined as

s(f(t; ai), f(t; aj)) =

∫ β

α

f ′(t; ai) · f ′(t; aj)√∫ β
α

(f ′(t; ai))2 dt ·
√∫ β

α
(f ′(t; aj))2 dt

dt. (3.2)

This index was introduced in Sangalli et al. (2009) as a cosine of the angle
between first derivatives of the functions f(t; ai) and f(t; aj) with the inner
product

〈f(t; ai)|f(t; aj)〉 =

∫ β

α

f ′(t; ai) · f ′(t; aj) dt.
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By Π(H) = {π1, . . . , πk} we denote a partition of the set H into k subsets
π1, . . . , πk, 1 ≤ k ≤ n, i.e.

k⋃
i=1

πi = H,

πi ∩ πj = ∅, i 6= j, (3.3)

|πj | ≥ 1, j = 1, . . . , k.

Elements π1, . . . , πk of such partition are called curve-clusters. To each cluster
πj ∈ Π we can associate its curve-center f(t; cj), where cj is defined by

cj = arg min
c

|πj |∑
i=1

d(f(t; ai), f(t; c)). (3.4)

If we define an objective function F : P(H, k)→ R+ on the set of all partitions
P(H, k) of H containing k clusters by

F(Π) =

k∑
j=1

∑
f(t;ai)∈πj

d(f(t; cj), f(t; ai)), (3.5)

then we can define an optimal curve-partition Π?, such that

F(Π?) = min
Π∈P(H,k)

F(Π).

Instead of minimizing the function F given by (3.5) directly, the well-known
k−means algorithm for finding the locally optimal partition could be applied.
In order to do this, we need to choose k arbitrary distinct initial curve-centers,
that is, curves f(t; c1), . . . , f(t; ck). Then we need to define clusters

πj := {f(t; ai) : d(f(t; ai), f(t; cj)) ≤ d(f(t; ai), f(t; cl)), l = 1, . . . , k, l 6= j},
(3.6)

which means that we assign each function f(t; ai) to the cluster based on the
curve-center it is least dissimilar to in terms of the dissimilarity function (3.1).
After all functions are assigned to clusters, the cluster centers are updated by
the optimization procedure (3.4). k−means clustering of curves was considered
in Tarpey & Kinateder (2003), while the k−means alignment algorithm which205

both clusters and aligns curves was proposed in Sangalli et al. (2010).
Optimization problem (3.4) is very difficult to solve since we deal with

global optimization on a space of parameters. Therefore, instead of the op-
timization procedure, we define a similarity matrix from which we construct
the corresponding similarity graph and use well-known spectral methods that210

allow us to make a new representation of the data set, i.e., the set of curves
for which any simple clustering algorithm such as k−means can be applied.
The most suitable choice of the similarity graph for the growth curve clus-
tering problem is the fully connected graph, that is, the one in which every
pair of vertices is connected by an edge. The edges are weighted with numbers215
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sij = s(f(t; ai), f(t; aj)), where s : H ×H → R+ is defined by (3.2), that is,
with similarities between the corresponding curves.
After the new point–based representation of each curve is obtained by using
spectral techniques, we apply the algorithm for searching for a nearly global
optimal partition, proposed in Scitovski & Scitovski (2013). We decided to use220

this algorithm as a substitute for the usual k−means algorithm because it
generalizes already known incremental algorithms for the purpose of finding a
good initial approximation for k−means. This algorithm locates either a glob-
ally optimal partition or a locally optimal partition close to the global one, and
it requires significantly shorter CPU-time than other incremental algorithms.225

Alternative approach

In most applications the functions are only observed at a finite number of time
points. This motivates us to consider an alternative approach to growth curve
clustering in which we ignore the functional nature of data set H. Therefore,
instead of considering a set H of growth curves defined with (2.1), we can
consider the set S consisting of N -dimensional vectors with components cor-
responding to function values in N fixed time points. Spectral clustering of S
can be performed as described in Section 2.2. Again, the most suitable choice
of a similarity graph is the fully connected graph and the most common sim-
ilarity function which models local neighborhoods is the Gaussian similarity
function (Ng et al. 2001) defined as

g(xi, xj) = e
−
||xi−xj ||

2

2γ2 , xi, xj ∈ S, (3.7)

where parameter γ controls the width of the neighborhoods.

3.1 Growth curve clustering algorithm

A big advantage of the spectral approach to growth curve clustering is its230

simplicity. The spectral algorithm is easy to implement in any software such
as Matlab, Mathematica, etc. since it uses basic linear algebra theorems, and
hence it is simple to solve.
First, we state the algorithm that uses one of the three types of Laplacian
matrices:235 �� ��INPUT: Set of growth curves H, number k of clusters.

• Construct similarity matrix S ∈ Rn×n based on a specific similarity

measure for comparison of growth curves.240

• Construct the similarity graph.

• Construct weighted adjacency matrixW of the constructed similarity

graph.

• Compute matrix LAP which is one of the matrices L, Lsym, Lrw.
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(↓ spectral clustering)245

• Compute k eigenvectors u1, . . . , uk of LAP which correspond to the k
smallest

eigenvalues and place them as columns in matrix U ∈ Rn×k.
(For Lsym we need an extra step which is a normalization of rows of

U to a length of 1.)250

• Cluster the points (yi)i=1,...,n in Rk, which are vectors corresponding

to the rows of U , with the algorithm for finding a nearly global

optimal partition, proposed in Scitovski & Scitovski (2013), into clusters

C1, . . . , Ck.�� ��OUTPUT: Clusters C1, . . . , Ck.255

For one of the two types of modularity matrices the algorithm is very similar
to the previous one:�� ��INPUT: Set of growth curves H, number k of clusters.260

• Construct similarity matrix S ∈ Rn×n based on a specific similarity

measure for comparison of growth curves.

• Construct the similarity graph.

• Construct weighted adjacency matrixW of the constructed similarity265

graph.

• Compute matrix MOD which is one of the matrices M , MD.
(↓ spectral clustering)
• Compute k eigenvectors u1, . . . , uk of MOD which correspond to the

k largest270

eigenvalues and place them as columns in matrix U ∈ Rn×k.
(ForMD we need an extra step which is a normalization of rows of

U to a length of 1.)
• Cluster the points (yi)i=1,...,n in Rk, which are vectors corresponding

to the rows of U , with the algorithm for finding a nearly global275

optimal partition, proposed in Scitovski & Scitovski (2013), into clusters

C1, . . . , Ck.�� ��OUTPUT: Clusters C1, . . . , Ck.

4 Numerical experiments280

4.1 Synthetic data

In this section, we generate synthetic data to illustrate the possibilities of
spectral clustering methods that use five types of matrices described in Section
2.2.
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For this purpose we consider 2 ≤ k ≤ 10 curve templates

f(t;Aj , bj , cj) =
Aj

1 + e−bj(t−cj)
, j = 1, 2, . . . , k

with arbitrarily chosen parameters (Aj , bj , cj) given in Table 1.

Table 1: Curve template parameters

k 2 3 4 5 6

(A, b, c) (100,0.8,8.1) (90,0.3,7.4) (91,0.52,6.4) (95,0.5,5.4) (94,0.5,5.1)

(101,1.1,8.3) (88,0.6,9.2) (92,0.7,9) (95,0.6,5) (96,0.7,5.8)

(91,0.5,8) (90,0.8,8) (94,0.7,6.2) (97,0.7,6.1)

(92,0.5,7.8) (96,0.4,6.6) (94,0.6,6.2)

(96,0.5,6.7) (94,1,7)

(95,0.55,5.9)

k 7 8 9 10

(A, b, c) (97,0.5,5.1) (99,0.5,5.1) (101,0.6,5) (104,0.7,4)

(99,1,5.8) (97,1,6) (94,0.7,6) (96,0.5,7)

(96,3.7,6.1) (98,2,6) (98,1.5,8) (98,1,5)

(97,2.1,4) (102,0.4,5.5) (102,2,5.6) (102,2,5.6)

(105,2.5,7) (104,1,7) (104,1,8) (104,1,7)

(100,3,5.9) (100,0.8,5.1) (100,0.8,5.1) (100,0.8,5.1)

(102,4.1,6.9) (108,0.7,6.9) (108,0.7,6.9 (108,0.7,6.9

(102,1.1,6.9) (102,1.1,6.9) (102,1.1,6.9)

(108,1,4) (108,1,4)

(105,0.5,4)

For each template we generate 10 data sets

Ajl = {(ti, Aj/(1+e−bj(t−cj))+εi), i = 1, . . . , 100}, j = 1, 2, . . . , k, l = 1, . . . , 10,

where ti = 20
100 i and εi ∼ N (0, σ2). We estimate parameters (A?jl, b

?
jl, c

?
jl) by

minimizing the least squares objective function

Fjl(A, b, c) =
∑

(ti,y
(jl)
i )∈Ajl

(
A/(1 + e−b(t−c))− y(jl)i

)2
.

In this way, we generate the partition Π? = {π?1 , π?2 , . . . , π?k} which consists of
k clusters of curves

π?j = {A?jl/(1 + e−b
?
jl(t−c

?
jl)), l = 1, . . . , 10}, j = 1, . . . , k.

LetH = π?1∪π?2∪. . .∪π?k. By using spectral partitioning algorithms we partition

H into k clusters and obtain the partition Π̂. Then, we use the adjusted Rand
index (ARI) to measure the similarity between partitions Π̂ and Π?. Details285

on the adjusted Rand index are given in Appendix B.
Figures 1 (a), (b) and (c) show data sets of growth curves generated from

logistic curve templates with parameters (90, 0.3, 7.4) (red), (91, 0.5, 8) (green)
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Fig. 1: Generated sets of growth curves with variance (a) σ2 = 10, (b) σ2 = 150
and (c) σ2 = 500.

and (88, 0.6, 9.2) (blue) on the interval [0, 20]. Errors are all independent and
normally distributed with mean 0 and variances 10, 150 and 500. When growth290

curves are more spread out from the corresponding curve templates, that is,
when variance is large, the clustering structure of the data set is less obvious.

All calculations were performed on the MatLab platform. For each cluster-
ing value k we considered 7 different values of variance σ2: 10, 50, 100, 150, 250, 300
and 500. Then, for each k and each σ2 we generated 30 data sets of curves295

to which we applied the spectral clustering method and calculated the ARI
indices. This enabled us to make statistical results concerning the ARI index:
its mean value µ and its standard deviation sd.
The algorithm for searching for a nearly global optimal partition was run up
to 150000 times for each of the five matrices considered.300

Table 2 shows mean values and standard deviations of ARI indices for
the spectral growth curve clustering method which uses cosine similarity of
curves defined with (3.2). The method is tested for all five matrices described
in Section 2.2. Results indicate that the mean value of the ARI decreases as
the variance grows. Standard deviation is usually low, which means that ARI305
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indices tend to be close to the mean value. The spectral method is most effec-
tive when symmetric normalized matrix Lsym is used. This is justified by the
fact that matrix Lsym appears in a relaxed version of the normalized min-cut
problem in which the objective function tries to balance clusters with respect
to the sum of their edge weights, i.e. similarities between their vertices. The310

objective function related to random walk Laplacian Lrw is the same, but there
is no additional step in which vectors corresponding to a new representation
of data are normalized to norm 1 (which happens in the case of Lsym). The
objective function that uses Laplace matrix L balances clusters with respect to
their sizes. This approach has deficiencies because sizes of clusters are not nec-315

essarily related to within–cluster similarity. Within–cluster similarity depends
on the edges and not on the vertices in the cluster. A similar comparison can
be done for a modularity matrix M and a normalized modularity matrix MD:
the objective function that uses M considers only the sizes of clusters, while
the one that uses MD balances clusters with respect to their edge weights.320

This explains why MD gives better results than M.

To further explore the efficiency of spectral methods, we used generated sets
of growth curves to test the spectral clustering method described in Section 3.
For a set of N = 2001 fixed time points we calculated growth function values.
In this way, each growth curve is represented by a 2001−dimensional vector.325

To measure similarity between these vectors we used the Gaussian similarity
function in which the value of parameter γ as well as the choice of norm || · ||
depends on the particular set of generated growth curves. Mean values and
standard deviations of the ARI for this method are given in Table 3. Results
for Laplace matrix L were excluded due to some calculation errors.330

Although mean values and standard deviations of the ARI are much higher
than the ones obtained using cosine similarity, their behaviour is similar. Mean
values tend to decrease as variance grows, while standard deviation is low.
Again, matrix Lsym gives the best results, but the efficiency of the spectral
method which uses other matrices is quite close to the one that uses Lsym.335

Table 4 is crucial to proving that spectral-based clustering techniques are
more efficient for growth curve clustering than some other well-known ap-
proaches. For this purpose, we studied a family of algorithms that are im-
plemented in the so–called Curve Clustering Toolbox, a Matlab toolbox that
implements a family of two-stage clustering algorithms combining a mixture of340

Gaussian models with spline or polynomial basis approximation (see Gaffney
2004). Considering the nature of our data set of curves, an appropriate choice
was the linear regression mixture model. We compared this method with the
spectral method that uses cosine similarity between curves and concluded that
the spectral method gives much better results.345

For the alternative approach, we compared mean values and standard devia-
tions of the ARI obtained from spectral methods using the Gaussian similarity
function on the set of 2001−dimensional vectors with the ordinary k−means
algorithm. We just inserted these vectors into the k−means algorithm as row
data. The conclusion in this case is that the efficiency of k−means is com-350

parable to our spectral approach, but the spectral approach still gives better
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results. We should also mention that spectral methods are much faster than
k−means.

Table 2: Mean value µ and standard deviation sd of ARI indices for the spectral
growth curve clustering method that uses cosine similarity.

L Lrw Lsym M MD

σ2 = 10 µ; sd µ; sd µ; sd µ; sd µ; sd

k = 2 1; 0 1; 0 1; 0 -0.389; 0.015 0.354; 0.230
k = 3 0.507; 0.006 1; 0 1; 0 -0.042; 0.016 0.548; 0.175
k = 4 0.507; 0.006 1; 0 1; 0 -0.042; 0.016 0.548; 0.175
k = 5 0.324; 0.140 0.662; 0.073 0.886; 0.069 0.389; 0.253 0.516; 0.085
k = 6 0.069; 0.340 0.652; 0.011 0.771; 0.024 0.527; 0.146 0.412; 0.095
k = 7 0.048; 0.019 0.837; 0 0.971; 0.013 0.889; 0.136 0.634; 0.019
k = 8 0.023; 0.010 0.645; 0 0.827; 0.001 0.372; 0.059 0.687; 0.014
k = 9 0.041; 0.027 0.467; 0.019 0.843; 0.006 0.316; 0.050 0.695; 0.026
k = 10 0.199; 0.010 0.552; 0.010 0.848; 0.025 0.310; 0.039 0.542; 0.012

σ2 = 50

k = 2 1; 0 1; 0 1; 0 -0.032; 0.020 0.351; 0.242
k = 3 0.513; 0.017 1; 0 1; 0 -0.036; 0.024 0.523; 0.167
k = 4 0.253; 0.045 0.761; 0.106 0.910; 0.060 0.808; 0.254 0.477; 0.580
k = 5 0.292; 0.174 0.628; 0.058 0.841; 0.054 0.268; 0.151 0.454; 0.100
k = 6 0.069; 0.340 0.652; 0.011 0.771; 0.024 0.527; 0.146 0.412; 0.095
k = 7 0.047; 0.019 0.842; 0.029 0.976; 0.016 0.482; 0.026 0.629; 0.018
k = 8 0.065; 0.083 0.643; 0.006 0.822; 0.010 0.230; 0.059 0.687; 0.012
k = 9 0.047; 0.027 0.472; 0.024 0.830; 0.016 0.305; 0.072 0.648; 0.035
k = 10 0.202; 0.039 0.546; 0.036 0.823; 0.090 0.321; 0.039 0.547; 0.039

σ2 = 100

k = 2 0.630; 0.455 0.973; 0.068 0.980; 0.060 -0.032; 0.020 0.357; 0.247
k = 3 0.517; 0.019 0.993; 0.025 0.993; 0.025 0.058; 0.174 0.446; 0.177
k = 4 0.232; 0.088 0.759; 0.114 0.907; 0.074 0.954; 0.112 0.476; 0.760
k = 5 0.174; 0.148 0.625; 0.053 0.776; 0.092 0.223; 0.179 0.453; 0.101
k = 6 0.028; 0.023 0.561; 0.047 0.606; 0.072 0.429; 0.074 0.325; 0.074
k = 7 0.038; 0.021 0.893; 0.090 0.972; 0.028 0.437; 0.077 0.616; 0.018
k = 8 0.128; 0.109 0.639; 0.009 0.805; 0.022 0.262; 0.046 0.676; 0.017
k = 9 0.038; 0.028 0.464; 0.028 0.800; 0.032 0.300; 0.070 0.599; 0.051
k = 10 0.196; 0.016 0.546; 0.011 0.801; 0.035 0.314; 0.039 0.567; 0.055

σ2 = 150

k = 2 0.497; 0.465 0.929; 0.127 0.929; 0.127 -0.030; 0.026 0.269; 0.230
k = 3 0.504; 0.095 0.971; 0.060 0.970; 0.062 0.057; 0.169 0.376; 0.168
k = 4 0.232; 0.910 0.800; 0.122 0.871; 0.100 0.893; 0.097 0.471; 0.092
k = 5 0.122; 0.145 0.606; 0.063 0.741; 0.087 0.185; 0.129 0.437; 0.085
k = 6 0.032; 0.023 0.509; 0.046 0.545; 0.050 0.341; 0.050 0.279; 0.063
k = 7 0.045; 0.037 0.901; 0.088 0.960; 0.031 0.345; 0.089 0.600; 0.021
k = 8 0.129; 0.107 0.627; 0.017 0.796; 0.037 0.238; 0.046 0.664; 0.014
k = 9 0.040 0.028 0.465; 0.048 0.759; 0.042 0.246; 0.066 0.557; 0.050
k = 10 0.183; 0.036 0.534; 0.018 0.763; 0.050 0.307; 0.047 0.546; 0.043

σ2 = 250

k = 2 0.181; 0.281 0.764; 0.195 0.813; 0.149 -0.026; 0.026 0.167; 0.201
k = 3 0.452; 0.169 0.875; 0.111 0.889; 0.097 0.091; 0.205 0.350; 0.198
k = 4 0.229; 0.088 0.805; 0.102 0.840; 0.097 0.770; 0.131 0.390; 0.061
k = 5 0.084; 0.116 0.542; 0.070 0.628; 0.090 0.155; 0.088 0.369; 0.095
k = 6 0.021; 0.014 0.455; 0.042 0.487; 0.048 0.326; 0.067 0.239; 0.050
k = 7 0.059; 0.063 0.863; 0.071 0.897; 0.055 0.312; 0.080 0.575; 0.024
k = 8 0.171; 0.096 0.594; 0.027 0.726; 0.046 0.255; 0.054 0.606; 0.032
k = 9 0.026; 0.020 0.451; 0.057 0.684; 0.050 0.241; 0.048 0.511; 0.055
k = 10 0.172; 0.045 0.511; 0.018 0.682; 0.050 0.283; 0.036 0.519; 0.040

σ2 = 300

k = 2 0.311; 0.400 0.772; 0.166 0.767; 0.180 -0.030; 0.022 0.245; 0.221
k = 3 0.429; 0.196 0.890; 0.104 0.898; 0.093 0.064; 0.118 0.293; 0.208
k = 4 0.160; 0.129 0.779; 0.098 0.789; 0.104 0.724; 0.149 0.385; 0.079
k = 5 0.059; 0.110 0.541; 0.073 0.607; 0.077 0.187; 0.108 0.384; 0.081
k = 6 0.026; 0.021 0.420; 0.051 0.456; 0.047 0.302; 0.060 0.226; 0.046
k = 7 0.035; 0.021 0.844; 0.081 0.884; 0.063 0.357; 0.089 0.570; 0.033
k = 8 0.151; 0.104 0.583; 0.030 0.690; 0.055 0.210; 0.054 0.582; 0.047
k = 9 0.028; 0.023 0.430; 0.038 0.668; 0.065 0.220; 0.055 0.494; 0.053
k = 10 0.170; 0.045 0.490; 0.019 0.660; 0.055 0.277; 0.035 0.512; 0.036

σ2 = 500

k = 2 0.057; 0.141 0.534; 0.260 0.570; 0.238 -0.019; 0.038 0.146; 0.189
k = 3 0.244; 0.238 0.697; 0.129 0.721; 0.136 0.112; 0.113 0.241; 0.122
k = 4 0.108; 0.115 0.601; 0.115 0.615; 0.120 0.524; 0.170 0.332; 0.059
k = 5 0.042; 0.073 0.418; 0.085 0.447; 0.077 0.183; 0.135 0.296; 0.081
k = 6 0.027; 0.020 0.351; 0.062 0.374; 0.056 0.230; 0.056 0.177; 0.046
k = 7 0.078; 0.079 0.709; 0.087 0.773; 0.057 0.410; 0.080 0.542; 0.039
k = 8 0.133; 0.101 0.526; 0.050 0.599; 0.059 0.196; 0.046 0.509; 0.042
k = 9 0.019; 0.015 0.398; 0.053 0.579; 0.056 0.202; 0.046 0.434; 0.058
k = 10 0.160; 0.052 0.458; 0.033 0.575; 0.042 0.247; 0.051 0.448; 0.040
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Table 3: Mean value µ and standard deviation sd of the ARI index for the
spectral clustering method that uses the Gaussian similarity function.

Lrw Lsym M MD

σ2 = 10 µ; sd µ; sd µ; sd µ; sd

k = 2 1; 0 1; 0 1; 0 1; 0
k = 3 1; 0 1; 0 1; 0 1; 0
k = 4 1; 0 1; 0 1; 0 1; 0
k = 5 0.998; 0.090 0.998; 0.009 0.998; 0.009 1; 0
k = 6 1; 0 1; 0 1; 0 1; 0
k = 7 1; 0 1; 0 1; 0 1; 0
k = 8 1; 0 1; 0 0.985; 0.040 1; 0
k = 9 1; 0 1; 0 1; 0 1; 0
k = 10 1; 0 1; 0 0.990; 0.029 0.998; 0.006

σ2 = 50

k = 2 1; 0 1; 0 1; 0 1; 0
k = 3 1; 0 1; 0 1; 0 1; 0
k = 4 1; 0 1; 0 1; 0 1; 0
k = 5 1; 0 1; 0 1; 0 1; 0
k = 6 0.962; 0.004 0.967; 0.043 0.895; 0.120 0.960; 0.038
k = 7 1; 0 1; 0 1; 0 0.998; 0.006
k = 8 0.952; 0.030 0.956; 0.035 0.850; 0.029 0.907; 0.066
k = 9 1; 0 1; 0 1; 0 1; 0
k = 10 0.957; 0.034 0.963; 0.036 0.875; 0.033 0.897; 0.049

σ2 = 100

k = 2 0.987; 0.050 0.980; 0.060 0.980; 0.060 0.973; 0.068
k = 3 1; 0 1; 0 1; 0 1; 0
k = 4 1; 0 1; 0 1; 0 1; 0
k = 5 0.970; 0.040 0.977; 0.040 0.966; 0.050 0.966; 0.051
k = 6 0.876; 0.068 0.883; 0.068 0.686; 0.084 0.868; 0.095
k = 7 0.997; 0.010 0.999; 0.006 0.989; 0.023 0.983; 0.023
k = 8 0.905; 0.050 0.913; 0.040 0.831; 0.043 0.831; 0.046
k = 9 0.998; 0.006 0.998; 0.006 0.996; 0.011 0.997; 0.008
k = 10 0.906; 0.040 0.910; 0.042 0.857; 0.031 0.848; 0.044

σ2 = 150

k = 2 0.974; 0.082 0.993; 0.036 0.967; 0.075 0.980; 0.060
k = 3 1; 0 1; 0 1; 0 1; 0
k = 4 0.998; 0.120 0.998; 0.120 0.998; 0.120 0.998; 0.120
k = 5 0.925; 0.072 0.940 0.054 0.904; 0.077 0.890; 0.088
k = 6 0.788; 0.085 0.790 0.085 0.645; 0.064 0.728; 0.115
k = 7 0.989; 0.018 0.989; 0.018 0.958; 0.031 0.954; 0.044
k = 8 0.882; 0.038 0.895; 0.038 0.830; 0.036 0.805; 0.053
k = 9 0.984; 0.023 0.986; 0.019 0.982; 0.022 0.962; 0.054
k = 10 0.855; 0.042 0.866; 0.034 0.820; 0.041 0.794; 0.043

σ2 = 250

k = 2 0.862; 0.124 0.87; 0.135 0.838; 0.149 0.866; 0.162
k = 3 1; 0 1; 0 1; 0 1; 0
k = 4 0.980; 0.390 0.984; 0.290 0.977; 0.030 0.982; 0.300
k = 5 0.789; 0.090 0.820; 0.090 0.741; 0.118 0.742; 0.120
k = 6 0.639; 0.089 0.656; 0.080 0.578; 0.083 0.586; 0.086
k = 7 0.942; 0.038 0.952; 0.031 0.891; 0.079 0.897; 0.053
k = 8 0.781; 0.054 0.790; 0.052 0.763; 0.053 0.758; 0.048
k = 9 0.958; 0.026 0.960; 0.025 0.935; 0.036 0.888; 0.068
k = 10 0.781; 0.042 0.802; 0.043 0.765; 0.042 0.731; 0.046

σ2 = 300

k = 2 0.845; 0.149 0.864; 0.147 0.751; 0.207 0.810; 0.221
k = 3 1; 0 1; 0 1; 0 1; 0
k = 4 0.978; 0.040 0.984; 0.330 0.975; 0.037 0.977; 0.360
k = 5 0.741; 0.105 0.764; 0.091 0.725; 0.114 0.722; 0.131
k = 6 0.577; 0.086 0.701; 0.087 0.531; 0.052 0.526; 0.062
k = 7 0.929; 0.051 0.941; 0.049 0.886; 0.064 0.878; 0.065
k = 8 0.742; 0.037 0.759; 0.038 0.723; 0.062 0.735; 0.047
k = 9 0.942; 0.032 0.951; 0.032 0.924; 0.054 0.878; 0.074
k = 10 0.759; 0.041 0.776; 0.048 0.733; 0.047 0.698; 0.048

σ2 = 500

k = 2 0.577; 0.213 0.588; 0.213 0.542; 0.236 0.544; 0.282
k = 3 0.980; 0.047 0.983; 0.045 0.977; 0.054 0.980; 0.047
k = 4 0.860; 0.070 0.875; 0.790 0.865; 0.076 0.878; 0.760
k = 5 0.519; 0.100 0.539; 0.103 0.512; 0.117 0.528; 0.114
k = 6 0.460; 0.069 0.469; 0.062 0.458; 0.065 0.446; 0.066
k = 7 0.855; 0.046 0.860; 0.050 0.795; 0.049 0.786; 0.052
k = 8 0.613; 0.057 0.624; 0.054 0.631; 0.043 0.637; 0.046
k = 9 0.880; 0.043 0.886; 0.042 0.835; 0.051 0.779; 0.058
k = 10 0.678; 0.056 0.684; 0.051 0.664; 0.038 0.633; 0.031
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Table 4: Comparison of mean values and standard deviations of the ARI for the
SCCC (spectral curve clustering method with cosine similarity) and the LRM
(linear regression mixture model for curve clustering) method. For the alter-
native approach, mean values and standard deviations of the ARI for the SCG
(spectral clustering method with Gaussian similarity) and the K−MEANS
method are compared.

SCCC LRM SCG K-MEANS

σ2 = 10 µ; sd µ; sd µ; sd µ; sd

k = 2 1; 0 1; 0 1; 0 1; 0
k = 3 1; 0 0.526; 0.037 1; 0 1; 0
k = 4 1; 0 0.664; 0.057 1; 0 1; 0
k = 5 0.886; 0.069 0.805; 0.134 1; 0 0.992; 0.042
k = 6 0.771; 0.024 0.455; 0.047 1; 0 1; 0
k = 7 0.971; 0.013 0.680; 0.094 1; 0 1; 0
k = 8 0.827; 0.001 0.694; 0.096 1; 0 1; 0
k = 9 0.843; 0.006 0.633; 0.044 1; 0 1; 0
k = 10 0.848; 0.025 0; 0 1; 0 1; 0

σ2 = 50

k = 2 1; 0 0.967; 0.088 1; 0 1; 0
k = 3 1; 0 0.313; 0.242 1; 0 1; 0
k = 4 0.910; 0.060 0.483; 0.086 1; 0 1; 0
k = 5 0.841; 0.054 0.700; 0.168 1; 0 1; 0
k = 6 0.771; 0.024 0.258; 0.061 0.967; 0.043 0.974; 0.035
k = 7 0.976; 0.016 0.673; 0.096 1; 0 1; 0
k = 8 0.822; 0.010 0.637; 0.071 0.956; 0.035 0.950; 0.035
k = 9 0.830; 0.016 0.559; 0.042 1; 0 1; 0
k = 10 0.823; 0.090 0; 0 0.963; 0.036 0.961; 0.026

σ2 = 100

k = 2 0.980; 0.060 0.791; 0.207 0.987; 0.050 0.980; 0.060
k = 3 0.993; 0.025 0.213; 0.232 1; 0 1; 0
k = 4 0.954; 0.112 0.370; 0.065 1; 0 1; 0
k = 5 0.776; 0.092 0.262; 0.285 0.977; 0.040 0.976; 0.036
k = 6 0.606; 0.072; 0.168; 0.035 0.883; 0.068 0.881; 0.071
k = 7 0.972; 0.028 0.655; 0.094 0.999; 0.006 0.997; 0.010
k = 8 0.805; 0.022 0.521; 0.112 0.913; 0.040 0.912; 0.041
k = 9 0.800; 0.032 0.509; 0.043 0.998; 0.006 0.998; 0.006
k = 10 0.801; 0.035 0; 0 0.910; 0.042 0.905; 0.038

σ2 = 150

k = 2 0.929; 0.127 0.741; 0.171 0.993; 0.036 0.974; 0.082
k = 3 0.971; 0.060 0.024; 0.090 1; 0 1; 0
k = 4 0.893; 0.097 0.342; 0.078 0.998; 0.120 0.995; 0.170
k = 5 0.741; 0.087 0.198; 0.248 0.940; 0.054 0.937; 0.045
k = 6 0.545; 0.050 0.104; 0.035 0.790; 0.085 0.793; 0.088
k = 7 0.960; 0.031 0.646; 0.087 0.989; 0.018 0.989; 0.018
k = 8 0.796; 0.037 0.392; 0.178 0.895; 0.038 0.893; 0.050
k = 9 0.759; 0.042 0.470; 0.042 0.986; 0.019 0.863; 0.040
k = 10 0.763; 0.050 0; 0 0.866; 0.034 0.865; 0.048

σ2 = 250

k = 2 0.813; 0.149 0.482; 0.250 0.870; 0.135 0.820; 0.160
k = 3 0.889; 0.097 0.020; 0.097 1; 0 1; 0
k = 4 0.840; 0.097 0.214; 0.059 0.984; 0.290 0.975; 0.040
k = 5 0.628; 0.090 0.059; 0.155 0.820; 0.090 0.811; 0.079
k = 6 0.487; 0.048 0.070; 0.025 0.656; 0.080 0.656; 0.091
k = 7 0.897; 0.055 0.595; 0.036 0.952; 0.031 0.948; 0.031
k = 8 0.726; 0.046 0.217; 0.195 0.790; 0.052 0.809; 0.049
k = 9 0.684; 0.050 0.399; 0.040 0.960; 0.025 0.956; 0.026
k = 10 0.682; 0.050 0; 0 0.802; 0.043 0.792; 0.035

σ2 = 300

k = 2 0.767; 0.180 0.414; 0.230 0.864; 0.147 0.851; 0.151
k = 3 0.898; 0.093 0.021; 0.060 1; 0 1; 0
k = 4 0.789; 0.104 0.234; 0.079 0.984; 0.330 0.982; 0.034
k = 5 0.607; 0.077 0.074; 0.154 0.764; 0.091 0.756; 0.073
k = 6 0.456; 0.047 0.066; 0.032 0.701; 0.087 0.611; 0.084
k = 7 0.884; 0.063 0.501; 0.178 0.941; 0.049 0.929; 0.051
k = 8 0.690; 0.055 0.143; 0.177 0.759; 0.038 0.767; 0.048
k = 9 0.668; 0.065 0.342; 0.099 0.951; 0.032 0.947; 0.035
k = 10 0.660; 0.055 0; 0 0.776; 0.048 0.771; 0.004

σ2 = 500

k = 2 0.570; 0.238 0.328; 0.192 0.588; 0.213 0.565; 0.236
k = 3 0.721; 0.136 0.008 0.041 0.983; 0.045 0.974; 0.061
k = 4 0.615; 0.120 0.141; 0.094 0.878; 0.760 0.868; 0.077
k = 5 0.447; 0.072 0.008; 0.041 0.539; 0.103 0.569; 0.092
k = 6 0.374; 0.056 0.029; 0.028 0.469; 0.062 0.471; 0.067
k = 7 0.773; 0.057 0.309; 0.224 0.860; 0.050 0.852; 0.047
k = 8 0.599; 0.059 0.089; 0.128 0.637; 0.046 0.671; 0.053
k = 9 0.579; 0.056 0.282; 0.084 0.886; 0.042 0.885; 0.040
k = 10 0.575; 0.042 0; 0 0.684; 0.051 0.677; 0.047



Spectral methods for growth curve clustering 17

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

(a)

0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

(b)

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

(c)

Fig. 2: Partition of sets of curves generated from the four logistic curve tem-
plates with mean 0 and variance 300. Figure (a) shows the ideal partition
obtained with the spectral method that uses Lsym and the Gaussian similar-
ity function with the Manhattan norm and γ = 100. The same ideal partition
is obtained by using the k−means algorithm. For both methods, curves are
represented as 2001-dimensional vectors. Figure (b) shows a curve partition
obtained by using linear regression mixtures, while Figure (c) shows a curve
partition obtained by the spectral method that uses cosine similarity. One
color is associated to each cluster.

4.2 A real-world problem

A set of 60 generalized logistic growth curves (Fig. 3a) is generated on the basis355

of measurement of weights for 60 pigs (30 barrows and 30 gilts) in the interval
between the age of 49 and 215 days (see Vincek et al. 2012). Since the weight
of pigs grows differently for barrows and gilts, it is reasonable to expect the
existance of two clusters in the set of these growth curves, one for barrows and
one for gilts. The weight of barrows increases faster than the weight of gilts.360

Therefore, in order to find a proper 2−partition of the set of growth curves, we
apply spectral clustering methods that use cosine similarity for all five matrices
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Table 5: The adjusted Rand index for all types of considered matrices for the
set of growth curves.

L Lrw Lsym M MD

ARI 0.006801 0.6892 0.746819 0.0386 0.633821
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Fig. 3: 2-clustering of growth curves. On the left, the ideal partition is pre-
sented where red and green curves correspond to growth curves of barrows
and growth curves of gilts, respectively. On the right, the partition obtained
by using spectral methods with cosine similarity and Lsym is presented. One
color is associated to each cluster.

described in Section 2.2. The values of the Adjusted Rand Index between the
estimated partition and a physical classification (barrows and gilts) are given
in Table 5. Figure 3 shows the ideal 2−partition of growth curves on the left,365

and a 2−partition of growth curves obtained by using matrix Lsym. As in
synthetic data, matrix Lsym gives the best results. However, curves are very
close to each other so it is not surprising that the ARI index is not very high.

5 Conclusion

In this paper, we study a problem of functional data clustering where functions370

are growth curves. On a given set of growth curves we apply spectral clustering
techniques which require a construction of a similarity graph and solving a re-
laxed version of the minimum cut problem or the Newman-Girvan modularity
maximization problem. These methods are nonparametric and they consist of
choosing a new point-based representation of curves that allows the usage of375

some standard clustering algorithms such as k−means.
To demonstrate the performance of the spectral approach to growth curve

clustering, we generate synthetic data sets and compare our results with other
curve clustering methods such as polynomial regression mixtures or the usual
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k−means method. Results indicate that spectral methods show better perfor-380

mance than other methods, i.e. they are more accurate and faster.
We firmly believe that the spectral approach to functional data clustering

deserves further work, for example, considering other types of curves, devel-
oping other measures to calculate similarity between curves and using other
types of similarity graphs.385

Appendix A Adjusted Rand Index

Let S be the set of n data items, S = {x1, x2, . . . , xn}, and let U = {U1, U2, . . . , Uk}
and V = {V1, V2, . . . , Vr} be two partitions of S. The measure of similarity be-
tween partitions U and V is based on counting the pairs of data items that
are in the same/different partition sets in U and V . Each pair (xi, xj) of data390

items is classified into one of four groups based on their comembership in U
and V , which results in the pair-counts derived using the contingency table.
The contingency table is a k × r matrix of all possible overlaps between each
pair of clusters U and V , where its ijth element shows the intersection of
cluster Ui and Vj , that is, nij = |Ui ∩ Vj |.395

V1 V2 . . . Vr marginal sums
U1 n11 n12 . . . n1r n1.
U2 n21 n22 . . . n2r n2.
...

...
...

. . .
...

...
Uk nk1 nk2 . . . nkr nk.

marginal sums n.1 n.2 . . . n.r n

In the case of disjoint clusters we have ni. = |Ui| and n.j = |Vj |. Let us define
the following numbers:
a - the number of pairs of elements in S that are in the same set in U and in
the same set in V ;400

b - the number of pairs of elements in S that are in different sets in U and in
different sets in V ;
c - the number of pairs of elements in S that are in the same set in U and in
different sets in V ;
d - the number of pairs of elements in S that are in different sets in U and in405

the same set in V .

The Rand index is a measure of similarity between U and V defined as

RI =
a+ b

a+ b+ c+ d
=
a+ b(
n
2

) .
The numbers a, b, c, d can be easily obtained by using simple combinatorial
methods.
The Rand index has a fixed range of [0, 1]. A problem with this type of similar-
ity measure is that the expected value of this index of two random partitions
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does not take a constant value (say zero). The adjusted Rand index ARI is
proposed in Hubert & Arabie (1985) assuming that the contingency table is
constructed randomly when the size of the clusters in U and V is fixed. The
ARI is calculated based on an upper bound 1 on the RI and its expected
value

ARI =

∑k
i=1

∑r
j=1

(
nij
2

)
−
∑k
i=1

(
ni.
2

)∑r
j=1

(
n.j
2

)
/
(
n
2

)
1
2

[∑k
i=1

(
ni.
2

)
+
∑r
j=1

(
n.j
2

)]
−
∑k
i=1

(
ni.
2

)∑r
j=1

(
n.j
2

)
/
(
n
2

) .
It is the normalized difference of the Rand Index and its expected value under
the null hypothesis (Wagner & Wagner 2007).
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Ćwik M, Józefczyk J (2017) Heuristic algorithms for the minmax regret flow-shop problem

with interval processing times. Central European Journal of Operations Research 1–24
Diestel R (2000) Graph theory. Electronic Edition 2000, Springer - Verlag, New York
Duda RO, Hart PE, Stork DG (2001) Pattern Classification, (2nd ed.). Wiley420

Gaffney S, Probabilistic Curve-Aligned Clustering and Prediction with Mixture Models.
PhD thesis, Department of Computer Science, University of California, Irvine, USA
(2004)

Gan G, Wu J, Ma C, Data Clustering: Theory, Algorithms, and Applications, SIAM,
Philadelphia (2007)425

Golub GH, Van Loan CF, Matrix Computations, Baltimore: Johns Hopkins University Press,
p. 320 (1996)

Hubert L, Arabie P (1985) Comparing partitions. Journal of Classification 2:193–218
Jacques J, Preda C (2014) Functional data clustering: a survey. Advances in Data Analysis

and Classification 8:231–255430

Jain AK (2010) Data clustering: 50 years beyond k-means. Pattern Recognition Letters
31:651–666
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